
GLSL-BASED RAY TRACING

PROGRAMAÇÃO 3D

MEIC/IST

Motivation

▪ Ray Tracing: “embarrassingly parallel” problem

▪ Independent pixel processing

▪ Suitable for GPU

▪ Take advantage of the last programming stage of the GPU
rasterization pipeline: pixel (fragment) shader that just
outputs a colour

▪ Fragment program is evaluated at every pixel.

▪ Assignment 2: to program a Progressive Ray Tracer shader
with GLSL by using a Shadertoy-based tool

Tools - Shadertoy.com

▪ https://www.shadertoy.com/ - website that lets you write
small programs (shaders) in a c-like language called GLSL
which are ran for every pixel in an image, on your GPU (not
CPU).

▪ Shadertoy uses WebGL but manages everything except the
pixel shader(s) for you.

▪ Limited input: pixel coordinate, frame number, time, and
mouse position

https://www.shadertoy.com/

Tools: Desktop platform

▪ Visual Code + Shadertoy plugin:
 https://code.visualstudio.com/download

 https://marketplace.visualstudio.com/items?itemName=stevensona.shad
er-toy – read it carefully

▪ VS Code: Use the "Show GLSL Preview" command

▪ Minor differences from Shadertoy.com. Shader entry point:
 Shadertoy.com: void mainImage(out vec4 fragColor, in vec2 fragCoord)

 VS Code: void main(); and you use gl_FragCoord and gl_FragColor

▪ The Course will provide a GLSL template, in VS Code, to the
Assignment

https://marketplace.visualstudio.com/items?itemName=stevensona.shader-toy

GLSL vs C++

▪ No object-oriented

▪ No recursion

▪ already knows vectors and matrices; data types and maths: vec2,
mat4, length(), cross(), dot(), etc.

▪ already knows 3D graphics operations reflect(), refract(),
faceforward()

▪ provides many goodies like clamp, mix (linear interpolation),
smoothstep (Hermite weighting+clamp)

▪ Warning:local memory and number of registers is an ultra-critical
resource on GPU. In particular, arrays eat a lot of resources. Use them
when they are *really* the only solution (or in small harmless cases).

Assignment 2 – GLSL Progressive Path Tracer

▪ This Course : programming the last stage of the GPU
rasterization pipeline: pixel (fragment) shader that just
outputs a colour

▪ Fragment program is evaluated at every pixel.

▪ State-of-the-art: RTX technology – Hardware Ray Tracing
Pipeline which will be discussed later

▪ GLSL template in VS Code available

Casual Shadertoy Path Tracing

▪ Suggested Posts in this series:

 Basic Camera, Diffuse, Emissive:
https://blog.demofox.org/2020/05/25/casual-shadertoy-path-tracing-
1-basic-camera-diffuse-emissive/)

 Image Improvement and Glossy Reflections:
https://blog.demofox.org/2020/06/06/casual-shadertoy-path-tracing-
2-image-improvement-and-glossy-reflections/

 Fresnel, Rough Refraction & Absorption, Orbit Camera:
https://blog.demofox.org/2020/06/14/casual-shadertoy-path-tracing-
3-fresnel-rough-refraction-absorption-orbit-camera/

Utilities for Random Scattering

▪ Several implementations of GPU-based pseudo-random
numbers

▪ common.h file: hash functions from Nimitz
(https://www.shadertoy.com/view/Xt3cDn)

▪ Other useful functions: random_in_unit_disk and
random_in_unit_sphere

https://www.shadertoy.com/view/Xt3cDn

Progressive Ray Tracing

▪ Before: in each frame, multiple samples per pixel were taken
and averaged

▪ Now: previous results are fed into current frame

 Calculate the color within the current pixel offset by a random
function and have its result accumulated to a running average of all
previous frames

Progressive Ray Tracing
#ichannel0 “self”

Progressive Ray Tracing

Looping instead of recursion

Scattering
▪ bool scatter(Ray rIn, HitRecord rec, out vec3 atten, out Ray rScattered)

▪ Check the material type: diffuse, metal, dieletric

▪ Types of bouncing off:
 Now we will consider diffuse (Lambertian) scattering: color bleeding

 Metal: surface specular reflections modulated by a roughness parameter

 Dieletric: reflection and refraction weighted by Schlick approximation of Fresnel
equation. Use probabilistic maths to decide if refract or reflect:

reflectProb = schlick(cosine, rec.material.refIdx); //or = 1 if total reflection

if hash1(seed) < reflectProb

create reflected ray

else

create refracted ray

 Dieletric: by using the above random ray generation, the attenuation will be just the
refraction albedo, ex. (1.0, 1.0, 1.0) for clear transparent materials

 Dielectric: use Beer’s law for coloured transparent -> if ray inside then:
𝑒−𝑟𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑙𝑜𝑟 ∗𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

Diffuse inter-reflections

▪ How do we see the color: the surface absorbs photons of
certain range of wavelengths and scatters the others
(subsurface scattering around the hit point)

▪ A diffuse surface reflects light in all directions, ie. It has not a
specific direction behaviour like the specular one

 A special case of diffuse reflection is Lambertian: the reflection is
uniform over the whole hemisphere regardless the irradiance.

Diffuse inter-reflections

▪ Color bleeding: objects take on color of their surroundings and
modulate that with their own intrinsic diffuse color (aka albedo)

Random diffuse scattered ray direction
▪ Lambertian distribution means a cosine distribution: higher

probability for a ray scattering close to the normal at the hit
point; aka cosine importance sampling

▪ Consider a unit radius sphere tangent to the hit point P and
calculate point S on the surface of it

S = P + N + normalize(random_in_unit_sphere)

P

N

S

Visual effects

▪ Gamma correction for accurate color intensity

 Gamma: 2.2

 Use linear color for ray tracing computation: pow(c, vec3(2.2))

 Store gamma corrected: pow(c, vec3(1.0 / 2.2))

▪ Motion blur with moving spheres

▪ Depth of field

▪ Modelling a hollow glass sphere: create a dieletric sphere with
a negative radius

Scene representation

▪ Building the scene on each invocation of a hit world function
▪ Simple but no flexible.
▪ Constraint by Shadertoy model: it encourages the use of implicit

form to model a scene
▪ 3D: use of implicit distance fields
▪ Primitives define simple shapes in an analytical closed form.

Spheres, rounded boxes, helixes, etc are good examples
▪ Domain operators allow to scale, bend, twist and repeat shapes.

Range operators allow to combine and displace and deform
shapes.

▪ https://iquilezles.untergrund.net/www/articles/distfunctions/distfu
nctions.htm: distance functions for basic primitives, plus the
formulas for combining them together for building more complex
shapes, as well as some distortion functions that you can use to
shape your objects.

https://iquilezles.untergrund.net/www/articles/distfunctions/distfunctions.htm

Physically-based Shading
▪ https://learnopengl.com/PBR/Theory

▪ originally explored by Disney and adopted for real-time
display by Epic Games

▪ Microfacets based

▪ https://www.shadertoy.com/view/4sSfzK

https://learnopengl.com/PBR/Theory

